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Summary. This paper introduces the concept of a 
transfer system of random variables and uses it ot study 
various types of assortative mating. The standard cor- 
relation structure between relatives under phenotypic 
and genetic assortative mating are obtained easily and 
these results are then extended to multiple characters 
by means of multivariate transfer systems. Equilibrium 
values for the parameters are found and index assorta- 
tive mating is considered with specific applications. 

Key words: Transfer systems - Assortative mating 

Ill Introduction 

The ideas of assortative mating for quantitative char- 
acters were introduced by Fisher (1918) in his classical 
and extremely difficult paper. The main results of this 
work are widely quoted (see Crow and Kimura 1970). 

However, in an effort to find more comprehensible 
derivations, various authors have re-examined the 
topic from a number of viewpoints (Nagylaki 1978, 
1982; Bulmer 1980) where further references may be 
found. One purpose of this paper is to introduce the 
idea of a transfer system of random variables and to 
show how it applies to assortative mating. Neglecting 
non-additive genetic effects, the standard results are 
quickly obtained and compared with those in the 
literature. 

The main thrust of this work, though, is to use 
general transfer systems of vector random variables to 
allow the effects of assortative mating on several char- 
acters to be studied. From the practical point of view 
such an extension is required if, for instance, the effect 
of assortative mating on one variable on the rest is to 
be examined, see [7]. 

The phenotypic covariance matrices between 
various relatives are derived and the generalisations 
have a strong resemblance to their univariate counter- 
parts. Both phenotypic and genetic assortative mating 
are considered and the relationship between the equi- 
librium and panmectic genetic covariance matrices is 
found. 

In general terms a transfer system, as used in this 
application, is an ordered set of vector random vari- 
ables such that the covariance between any two vari- 
ables conditional on any third variable, which lies 
between the two in the ordering, is null. To the 
author's knowledge, such structures do not appear to 
have been used in the study of assortative mating. The 
main property of these systems is elementary and it 
will be developed in the subsequent sections. 

[21 Statistical background and transfer systems 

This section develops the idea of a transfer system of random 
variables and the concept is applied to assortative mating in 
subsequent sections. The treatment, for scalar random vari- 
ables, pivots on properties of partial correlation analysis and 
this statistical tool will be briefly outlined. For further in- 
formation see Kempthorne (1957, chapter 14). 

Let Xi, X2, X3 be random variables. Without loss of gen- 
erality it is assumed they have zero mean and unit variance. 
Let 0ij be the regression of Xi on Xj and consider 

Xl.2 = Xl  - QI2 X2,  X3.z = X3 - Q32 X2-  

Thus, Xi.2, X3.2 are the deviations of Xl and X3 from their 
best linear predictors using X2. 

The correlations between XI.2 and X3.2 is defined by 

Q13.2 = C [Xl.2,  X3.2]/{V [Xl.2] V [X3.2]} 1/2 

= (Q13 -- Q12 032)/{( 1 -- 0122)(1 -- Q22)}1/2. 

Necessarily, if 013. 2 = 0, Ol3 = 012 032. 
The interpretation of 0~3.2 = 0 is that, apart from linear 

effects due to X 2 on XI and X3, X1 and X3 are uncorrelated. 
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Consider now a system of (n+ 1) random variables; 
Xo, XI, . . . ,  Xn with E [Xi] =/zi and V[Xi] = ai z. If this system 
has the property that for all i < j and for all i < k < j, 0ij.k = 0, 
then it will be called a "transfer system". 

It follows from the definition that 
n--I 

00n = 1-[ ~i~+l (1) 
i=0 

since the result is certainly true for n = 2 and assuming it is 
true for (n - 1) n-~ 

O0n.n-I = 0 ::~ Q0n = 0 o n - I  0 n - I n  = / ~  Oii+l �9 
i=o  

131 Applications to assortative mating 

TO apply the above concept of  a transfer system to 
assortative mating only requires clear diagrams, good 
notation and elementary genetic manipulations. Certain 
standard pedigrees will be considered and individuals 
labelled Pi j ,  where i refers to the number  of  genera- 
tions previous to generation zero. Thus Pij  is the jth 

individual in the pedigree at generation - i. 
The phenotypic and additive genetic values of  Pij 

will be written as Pij a n d  gi j ,  each being expressed as a 
deviation from the population mean, and V[Pij  ] = 0 -2 (i), 
V [ g j  = 0-~ (i). 

Under random meating there is zero phenotypic 
and genetic correlation between mates. However,  when 
some form of assortative mating is practiced this as- 
sumption is no longer valid. 

S u p p o s e  Pio and Pi l  a re  mates then assortative 
mating introduces a correlation between gio and gil 
which will be referred to as mg. The relationship which 
mg bears to O [ P i 0 , P i l ] = m p  depends on the type of 
assortative mating which is practiced. In the case of  
phenotypic assortative mating, as will be shown, 
mg = h 2 mp where h 2 = 0-~10-~, and under genetic assor- 
tative mating mp = h 2 mg. 

These results can be established immediately  by 
considering the appropriate  transfer systems and using 
(1). Let Sp = {gio, Pi0, Pil, git} and Sg = {Pi0, gi0, giJ, Pil} 
be transfer systems. Then, Sp and Sg are pertinent to 
phenotypic and genetic assortative mating respectively 
and ~.) [gi0, gil] = m g =  h m p h  = hZmp while g[Pi0, Pit] 
= mp = h mg h = h 2 rag, see [5]. 

The first pedigree considered will be that of  n th- 
order parent-child. For  this and subsequent predigrees 
there will be a clear diagram and the derivations will 
be carried out under specific headings, firstly assuming 
phenotypic assortative mating. Notes will indicate the 
necessary changes if genetic assortative mating is used. 

nth order parent-child 

Required: ~ [Pno, Poo] 

Transfer system: {Pno, gn-lO, gn-20 . . . . .  g00, P00} 

1% en~ 

Pn- lO P n - l l  

Pn- 2o 

Plo P11 

Poo Fig. 1 

Ingredients: 

(i) p [Pno, gn-lo] = ~ [Pno, 1 ~(gn0 + gnl)] 
__ 1 
- y 0 [Pno, gno] + �89 0 [Pno, gnl] 

h 
= ~ - ( l + m p )  (usingSp) 

1 (i i) 0 [gio, gi-lo] = Q [gio, ~ (gio + gil)] = 1 (1 + mg) 

(iii) O [goo, Poo] = h [ ]nl 
Result: 0 [Pno, Pool =-~- (1 + mp) 

Note. If genotypic assortative mating is practiced Sg 
must be referred to in (i) instead of  Sp and hence 

h ( 1  + m p ) b e c o m e s  h (1 + mg) so that 

g [Pn0, Poo] = h 2 

FulLsibs 

Required: ~ [Poo, Pol] 

Transfer system: {Poo, goo, go1, Pol } 

Ingredients: 

(i) ~ [Poo, goo] = O [go1, P01] = h 

(ii) ~ [goo, goJ] l = g [~ (gt0 § gll),  1 (gl0 + gJl)] 

=�89 +rag) 
h 2 

Result: 0 [Poo, Poll = ~ -  (1 + mg). 



Plo Pll 

X 
Poo POl Fig. 2 

HalJ:sibs 

Required: ~ [Poo, Poll 

Transfer system: {Poo, goo, go1, Pol} 

Ingredients: 

(i) Q [Poo, goo] = ~ [gol, PoJ] = h 

(ii) Q [go o, go l] = Q [�89 (glo + gll), ~(gH + g12)] 

= �88 + 2mg + Q [glo, g12]). 

The transfer system connecting glo and gll is {glo, PlO, 
Pll, PIE, g~z}, by the system of mating, hence 

O [glo, g12] = h mp mp h = h 2 mp 2 = mp mg and 

Q[goo, g01]----~l[ l + m g ( 2 + m p ) ] .  

h 2 
Result: Q [Poo, P01] =-~- [1 + mg (2 + mp)]. 

Note. If genotypic assortative mating is practiced the 
transfer system of (ii) is {Plo, glo, gll, g12, Pl2} and 
Q [glo, g12] = m E so that 

Q[Poo, P o l ] = h 2 [ ~ - ~ ]  2. 

P2o P21 

Plo PH P~2 

\F 
Poo Fig. 4 

Single first cousins 

Required: Q[Poo, Pol] 

Transfer system: {Poo, goo, gll, g12, gol, Pol} 

Ingredients: 

(i) ~ [Poo, goo] = Q [go1, Pol] = h 

(ii) Q [goo, gH] = ~ [gt2, go1] = (1 + mg)/2 

(iii) Q [gIl, g12] = (1 + mg)/2. 

Result: 0[Poo, POl] hE 1 mg 

P2o P21 

Plo PII P12 P13 

\ r  I /  
Poo Pol Fig. 5 
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Plo P11 P12 

\ /  \ /  
Poo Pol Fig. 3 

Uncle-nephew 

Required: Q [Poo, PI2] 

Transfer system: {Poo, goo, gll, g12, P12} 

Ingredients: 

(i) Q [Poo, goo] = Q [g12, P12] = h 

(ii) ~ [goo, gll] = [�89 + gll), g11] =�89 + mg) 

(iii) ~[gll,  g12] = �89 + mg) (from full-sib). 

Result: 0[Poo, Pl2] hE 1 mg 

Double first cousins 

Required: ~ [Poo, POl] 

Transfer systems: 

basic: {Poo, goo, go l, Pol} 

auxiliary: {goo, glo, gll, go1}; 

{goo, gl2, g13, gol}; 

P20 P21 P:2 P23 

I I 
Plo Pli P12 Pl3 

Poo Po~ 

{goo, glo, g12, g13, gol} 

{g00, g12, g13, gll, gol} 

Fig. 6 
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Ingredients: 

(i) ~ [P00, g00] = ~ [go i, P01] = h 
(ii) ~ [g00, go 1] 1 1 = Q D- (glo + g12), ~(gll  + gl3)] 

= I{Q [glo, gil l  + Q [glo, gl3] + Q[gl2, gill  

+ O [gl2, g13]} �9 

Using the auxiliary transfer systems 

[gz0, gll] = Q [gl2, g13] = (1 + mg)/2 (from full-sibs) 

[gl0, g13] = ~ [g12, gll] = mg(1 + mg)/2 

so that 

 ,g00g0, - ~- [(1 + mg)/2 +mg (1 + mg)/2] = 

Result: q[P00, P0,]=h2 [~-~--~] 2. 

The above results are summarised in Table 1. The 
first column of formulae lists the expressions for the 
correlation coefficients under phenotypic assortative 
mating which dictates mp and induces mg = h E mp. The 
adjacent column gives the necessary changes if the 
assortative mating is genetic and hence specifies mg 
and induces mp = h E mg. 

The result for half-sibs agrees with that of Nagylaki 
0978) but disagrees with Bulmer (1980). On the other 
hand, the correlation between double first-cousins in 
this table agrees with Bulmer (1980) but disagrees with 
Fisher's result (Crow and Kimura 1970). 

141 Multivariate transfer systems 

In order to extend the results of assortative mating to 
several characters, it is necessary to introduce transfer 
systems for vector random variables. The work is 
technically a little more involved but the additional 
effort is well spent. 

Let {X0, Xi . . . . .  Xn} = S be a set of random vectors 
of dimensions k0, kl . . . . .  kn. Suppose that E [Xi] = 0, 
V [ X i ] - V i i ( k i x k i )  and C [ X i X j ] - V i j ( k i x k j ] .  Con-  
sider any three variables Xi, Xj, Xk where i < j < k and 
suppose that the conditional variables XilXj and 
Xk!Xj can be represented by 

Xi I Xj = Vii vjjl Xj + ~'ij 

XkIXj = Vkj Vj31 Xj + ~kj 

where E [eij] = 0, E [ekj] = 0, C [~ij, Ckj] = C [Xi Xj  I Xj]  = 0, 
V[eij] = Vii-  Vii Vii I Vii and V[ekj] = Vkk -- Vkj Vii I Vik. 
A system satisfying the above conditions will be called 
a transfer system and, for such systems 

C [Xi, Xk] = Vii Vj] 1 Vjk. 

The term Vii V~jjl Xj is, in a sense, the best linear 
predictor of Xi given Xj and, under the conditions, it is 

Table I 

Relationship Correlation 

Phenotypic assortative Genotypic assor- 
mating tative mating 
(mg = h 2 mp) (mp = h 2 mg) 

n th order 
parent-child 

Full-sibs 

Half-sibs 

Uncle-nephew 

Single first-cousin 

Double first-cousin 

T ( l + m p )  hE [ - ~ l n  

-~- [1 + mg(2+mp)] h 2 

the conditional expectation of X i given Xj. Similarly 
for Xk. Thus, in a transfer system the association 
between Xi and Xk is explained entirely by the linear 
association of these variables with X i. Notice that if S 
is a multivariate normal system, the conditions for a 
transfer system can certainly be realised. 

Anyway, 

Von ~--- Vo i Vl-ll VI2 V221V23 . .. V n l  1 n_ 1Vn_ 1 n, n ~ 2  (2) 

since it is true for n = 2 and assuming that it holds for 
n - 1  

V0n = V0n- 1Vnl I n- 1Vn- I n . 

The result (1) of section [2] follows from (2) as a 
special case. 

[51 Applications to assortative mating 

In order to discuss multi-character assortative mating it 
is necessary to set up the appropriate structure. As- 
sume there are k characters with phenotypic and 
genetic vectors p and g, all measurements being taken 
from the population mean vector. Put 

C [p, p] = P, C [g, g] = C [g, p] = G 

and consider phenotypic and genetic assortative mating 
involving the vectors p and g. In fact, let Pi0 and Pil be 
mates at generation i with phenotypes and genotypes 
(Pi0, gi0) and (Pil, gi 1). Then under assortative mating 

C [gi0, gil] = Cg (i), C [Pi0, Pil] = Cp(i) 

and since this type of mating should be characterised 
by the correlation structure Cp ( i )=  dp (i)Mp Ap (i) and 



Cg(i) = Zig(i) Mgzlg(i) where 

Zip (i) = diag ( ~ l l  (i) . . . .  , ~ ) ,  

Zig (i) = diag ( ~  . . . .  , VGkk (i)) 

and Mp, Mg are the respective correlation matrices 
induced by the scheme of mating. 

In any case, to establish the relationship between 
C v and Cg the two sets of vectors 

Sp = {gi0, Pi0, Pil, gil} and Sg = {Pi0, gi0, gil, Pil} 
are required as transfer systems. In fact, applying (2) 
and Sp for phenotypic assortative mating Cg(i)= 
C [gi0, gil] = G (i) P (i) -I Cp (i) P (i) -1 G (i). For geno- 
typic assortative mating use Sg and (2) to show that 
Cp(i) = G(i) G(i) -I Cg(i) G(i) -1 G(i) = Cg(i) and Cg(i) 
and Cp(i) are the counterparts of hZmg and hZmp for 
the single character case. 

It is clear that the multicharacter treatment of 
assortative mating is considerably more complicated to 
the univariate case. The same format as was adopted 
earlier will be followed here, reference being made to 
the appropriate figures. 

n th orderparent-child (Fig. 1) 

Transfer system: {Pno, gn- 10, gn-20 . . . . .  g00, P00}. 

Required: C [Pno, Pool 

Ingredients: 

(i) C [Pn0, gn-t0] = C [Pn0, �89 (g.0 + gnl)] 
=�89 1 + ~ C [Pno, gnl] 
-- ~-G + ~ - -  1 I Cp P-I G (from Sp) 

(ii) C [gi0, gi-10] = C [gi0, �89 + gil)] = ~G + ~ c g l  I 

= G [  I + G-1Cg ] 2  

(iii) C [goo, Poo] = G 

Result: G [ I + P-1CP 1. G-I. a [I + G-I Cg 1 
2 - 2 " "G-1G 

[i+Plc ]ii+o lC ln l 
= G  2 " 2 

Note. If genotypic assortative mating is used Sg must 
be referred to in (i) and in this case 

C [Pn0, gn-10] = �89 [C [Pn0, gn0] + C [Pno, gnl]] 

- ' [ G + G G - I C g ] = G [  I + G - ' C g  ] - 2 -  2 
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and 

C [ p n ~ 1 7 6 1 7 6  n ' 2  

Full sibs (Fig. 2) 

Required: C [Poo, Pol] 

Transfer system: {Poo, goo, gol, P01} 

Ingredients: 

(i) C [Poo, goo] = C [gol, Pod = G 
(ii) C [goo, gol] l 1 = C [~- (glo + gll), ~" (glo + gll)] 

= G [  I + G - 1 C g  ] 2  

e e s u l t : C [ P ~ 1 7 6 1 7 6  G - I G 2  

Half sibs (Fig. 3) 

I + G-1 Cg .] 
= G  2 " 

Required: C [Poo, Po~] 

Transfer system: 

basic: {Poo, goo, go1, Pol}; 
auxiliary: {glo, Plo, P11, P12, g12}. 

Ingredients: 

(i) C [Poo, goo] = C [gol, Pol] = G 

(ii) C [goo, gol] = C [1 (glo + g11), �89 (gll + gl2)] 

--7' [G + 2 Cg + C [glo, gl2]]. 

Using the auxiliary transfer system which is specific to 
phenotypic assortative mating 

C [glo, gl2]= GP -1CpP -l CpP - I G  and 

Result: 
G 

C [Poo, Po l] = ~ [I + 2 G-  l Cg + P- l Cp P- l Cp P- l G]. 

Note. If genotypic assortative mating is used the re- 
quired auxiliary transfer system is {Plo, glo, gH, gl2, Pl2} 
and C [glo, g12] = Cg G-  l Cg so that 

C[Poo, Pol]=I[G+2Cg-I-CgG-ICg]-GfI+G-ICg]2" ? ~ " 

Uncle-nephew (Fig. 4) 

Required: C [Poo, Pl2] 

Transfer system: {Poo, goo, gll, g12, Pl2} 
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Ingredients: 

(i) C [Poo, goo] = C [g12, P12] = G 

(ii) C [ g ~ 1 7 6 1 7 6  I+G-'Cg]2 

[ I + G - l C g ]  (fromfull_sibs) (iii) C [gl l ,  g12] = G 2 

--l I+G-1Cg ]~176 
[ i + O - l C g  ]2. 

= O  2 

Single first cousins (Fig. 5) 

Required: C [Poo, Pol] 

Transfer system: {Poo, goo, gll, g12, gol, Pol} 

Ingredients: 

(i) C [Poo, goo] = C 

(ii) C [goo, gu] = C 

= G  

(iii) C [gl l ,  g12] = G 

Result: C [Poo, Pod = G G - 1 G  [ L 

[g12, Pl2] = O 

[-~ (glo + gll), glt], 

I + G - 1 C g  
2 

. I + G - 1 C g  
2 

I+G-ICg2 ] 

= C [g12, gol] 

(from full-sibs) 

G-I O [ I+  G-I Cg] G-l  G [ I+  O-I Cg ] 
2 2 G - l G  

I +  G -1 Cg] 3 ' 
= G  2 

Double first cousins (Fig. 6) 

Required: C [Poo, Pol] 

Transfer systems: 

basic: {Poo, goo, go1, Pol}, 
auxiliary: {goo, glo, gJ1, gol}, {goo, gJo, g12, gl3, gol} 

{goo, g12, g13, gOl}, {goo, g12, g13, gll, gOl} 

Ingredients: 

(i) C [P00, g00] = C [g01, P01] = G 
(ii) C [goo, go1] = C [�89 (glo J + gl2), 7 (gll + gl3)] 

_ I [C [glo, gu] + C [glo, g13] 

+ C [g12, gll] + C [g12, g13]]. 

Using the auxiliary transfer system 

C[gl0 '  gll] = C[gl2' g13] = G [ I+ G-I Cg ] 2  

(from full-sibs 

C [glo, g13] = C [g12, gll] = C [glo, g12] G-1 C [g12, g13] 

[i+o,c  1 = CgG-J O - ~ = Cg 2 

and 

C [g00, g01] = G [. I + G-I  Cg ] 2 
2 

I + O  1Cg ]2G_ 1G 
Result: C [P00, Pol] = 0 0  - 1 0  2 

I + G  l Cg ]2. 
= G "  2 

The above results are summarised in Table 2 which 
is the analogue of Table 1. The same comments apply 
to the second and third columns. 

[6] Parameters at equil ibrium 

For a single character with additive genetic variance 
a g2 under panmixia, it has long been known that the 
equilibrium variance under assortative mating is 
~-~ = o-2/(1 -- mg). This has been established in a variety 
of ways; in particular a simple model for assortative 
mating proposed by Wright (1921) and lucidly dis- 
cussed by Crow and Kimura (1970) leads to this result 
as the number of determining loci increase without 
limit. 

However, Bulmer (1980) has used the following 
argument, which, yields the required results very sim- 
ply. Let P00 be an individual in the current generation 
with parents Plo and P11. Then a model for g00 is 

I goo = E [goo]g~o, gll]  + 8 = ~(g l0  + g11) + e. 

This model holds irrespective of the mating system so 
that, for instance, under panmixia 

a 2 = V [�89 (g,o + g,1) ]  + V [el => V [e] = a2/2. 

Thus, under assortative mating one is lead im- 
mediately to the recurrence relation 

0-~ (n) = 0-2 (n - 1) (1 + mg)/2 + 0-g2/2 

showing that in particular 

ag2(1)=a~(1 +mg/2)  and 6"g2=ag2/(1-mg). 

w h e n  mg is invariant. 
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Relationship Covariance matrices 

Phenotypic assortative mating 

(Cg = G p-1 Cpp-I G) 

Genotypic assortative 
mating 
(Cp = Cg) 

n th order parent-child 

Full-sibs 

Half-sibs 

Uncle-nephew 

Single first cousins 

Double first cousins 

G II + P~' Cp ] I I  + G-' Cg]n-' 

[I+O 1 G 2 

G ~- [I + 2G -1Cg + p-I Cp p-1 Cpp-I G] 

[I+ G-ICg] 2 
G 2 

G [ I + G - I C g ]  3 2  

[I+ G-ICg] 2 
G 2 

On the other hand, if mp is the invariant, mg(n) 
= h 2 (n) mp, where 

h 2 (n) = a~ (n)/(a~ (n) + a2), a~ + a~ 2 = a 2, 

n refers to the n th generation after the start of  assorta- 
tive mating and a~ = a2 (0). Using ^ to denote equilib- 
rium values 

#gz = a~/(1 - 1] 2 mp), 112 = b2/(02 + a~) 

and these expressions can be used to define 112 in terms 
of a~, cr~ and rap, Bulmer (1980). 

In general write 

g00 = E [g00] g01, gll] = �89 (g01 + gll) + e 

where E [e] = 0. Since the model holds for panmictic 
populations in particular, V [e] = G/2. At generation n 

1 [ G ( n -  1) + C g ( n -  1)] + G/2 G (n) = 

which gives 

G(1) = G [I + G-I  Cg/2], G -  (~g= G.  

If the mating is such that 

Cg(n) = Cg = G (n) p-1 (n) Cp(n) p-1 (n) G(n)  

is invariant, a situation which is achieved by choosing 
Cp (n) = P- 1 (n) G (n) Cg G (n) P- 1 (n), the equilibrium 
equation becomes 

( 3 = C g + G .  

Otherwisel with Cp (n) = Ap (n) Mp Ap (n), Mp invariant, 
the equation must be solved iteratively using the 
equations for G (n) and Cg (n). 

On the other hand, writing Cg (n) = A g (n) Mg (n) A g (n) 
and if Mg (n) --= Mg is invariant, then as an extension of 
the single character case, let (3:Zfgl~gzig,  Zig: 
diag ((311 . . . . .  (3kk), then 

Jg l~g Z~g -- Jg MgzJg = G.  

This implies that (3 i i  = Gii/(1 - mgii) and that 

(3 = G + 3g Mg As. 

It can be shown that the same result follows by an 
extension of Wright's model for assortative mating. 

[7] Index assortative mating 

It may be that individuals are mated on the basis of 
some index I (p) = p 'f l  or I (g) = g'fl where fl is a set 
of weights which may be arrived at in a variety of 
ways. For instance, the usual weights for the pheno- 
typic selection index is fl = p- i  Ga, where a is a vector 
of economic weights. This form of mating requires 
certain changes to be made to the results of [6] and 
these are outlined briefly here. 

Firstly, the mating transfer systems must be con- 
verted to 

S l ( p }  = {gi0, Pi0, Ii0 (P), Iil (P), Pil, gil} 

St (g )  = {Pi0 ,  gi0, Ii0 (g), Iil (g), gil, Pil}" 

It is now possible to calculate the Cp and Cg matrices 
required for [5]. In fact 

Cg = G fl fl" G ml(p)/ (fl'P fl), Cp = P fl f l 'P ml(p)/fl'P fl; 
C o = G tiff '  G mi(g)/(fl' G fl), Cg = G tiff '  G ml(g)/fl' G ,8", 
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where ml(p) and ml(g) are phenotypic and the genetic 
correlations between the indexes of mates. 

It is noted that under phenotypic assortative mating 
mr{g) = h2t(p) mr(p) and under genotypic assortative mat- 

2 where 2 ing ml(p)= h/(p) ml(g), hl(p) is the heritability of 
p'/~. 

Further alterations are needed to the results for 
half-sibs; in particular the auxiliary set becomes, under 
phenotypic assortative mating, 

{glo, Plo, Ilo (P), I11 (p), I12 (P), P12, gll} 

which gives 

C [gl0, g12] = ml(p) Cg. 

Under genetic assortative mating this transfer system 
becomes 

{Plo, gl0, Ilo (g), Ill (g), I12 (g), g12, PIE} 

and 

C [gl0, g12] = ml(g) Cp. 

No further adjustments appear necessary. 
It is the form of the mating transfer set which 

specifies the system of mating. Thus, Ii(p) and Ii(g) can 
be specialised to investigate the effect of assortative 
mating on one character on the rest by putting the 
appropriate element of fl equal to unity and the rest 
zero. In this case Cg and Cp take special forms which 
can be substituted into the expressions of [5]. 

Some explicit results have been derived by Gianola 
(1982) and it is instructive to verify some of the equilib- 
rium formulae reported in that paper. It is noted firstly 
that, restricting attention to two characters and practic- 
ing phenotypic assortative mating on the first character 
only, fl' = (1, 0), 

Cg(n) = G (n) fl/? 'G (n) mj/Pll (n) 

where t iff  = [10 00], and m, is the phenotypic correla- 

tion between the first character for the two mates. This 
can be written as 

Cg (n) = A g (n) Mg (n) A g (n), 

A g (n) = diag (GI1 (n), G22 (n)) 

where 

Mg(n)=mlhl2(n) [  I og(n)] 
Og (n) 02 (n) ] 

and h~ (n), is the heritability for the first character at 
generation n and Og (n) the genetic correlation between 
the two characters. It is assumed that m~ is invariant 
and characteristic of the mating System. 

Letting " indicate equilibrium values, from Section 
[6] 
Zlg l~g Zlg -- Z~g ]QIg Zig = Z~g i~g Z~g = G 

where 
lqg [ 1-fiCm, Og(1-fi~m,)] 

= hi ml O~ ]" [Og(1-  fi12 ml) 1 -  "2 -2 

This establishes that 

(311 (1 - fi~ ml) = GI1, (322 (1 - fie ml 02) = G22, 

]/-~H ~ 0g(1-  fi~ ml) = G~2 

from which it follows that 

Og = og/V] - fi~ ml (1 - Og 2) 

after some algebra. These results are identical to (7), 
(8) and (12) of Gianola (1982); this paper should be 
consulted for further explicit results and discussions of 
application. 
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